Carleton University Canada's 
Capital University

Graduate Calendar Archives: 2004 / 2005

Mechanical and Aerospace Engineering

Mackenzie Building 3135
Telephone: 520-5684
Fax: 520-5715
Web site:

The Department

Chair of the Department: Jonathan Beddoes
Associate Chair (Graduate Studies): John Gaydos

In addition to University and Graduate Faculty regulations, all Engineering departments share common procedures that are described in Section 18 of the General Regulations of this Calendar.

The Department of Mechanical and Aerospace Engineering offers programs of study and research leading to M.A. Sc. and M.Eng. degrees in Aerospace Engineering, Materials Engineering, and Mechanical Engineering, and to Ph.D. degrees in Aerospace and Mechanical Engineering. These degrees are offered through the Ottawa-Carleton Institute for Mechanical and Aerospace Engineering, which is jointly administered by the Department of Mechanical and Aerospace Engineering at Carleton University, and the Department of Mechanical Engineering at the University of Ottawa. For further information, including admission and program requirements, see the Institute's section of this Calendar.

Programs of research and study are offered in several areas:

  • Aerodynamics and Gas Dynamics
  • Heat Transfer
  • Stress and Failure Analysis
  • Lightweight Structures and Aeroelasticity
  • Vibration Analysis
  • Computer-Aided Design and Engineering
  • Robotics
  • Control Systems
  • Vehicle (Performance and Safety)
  • Engineering
  • Nuclear Engineering
  • Energy Systems
  • Energy Conversion and Utilization
  • Manufacturing Engineering
  • Materials Engineering

The Department has a major research commitment, both analytical and experimental, to thermofluid-dynamic and mechanical problems of gas turbine engine design and o peration. Current work includes flow prediction and analysis in turbo-machines; two-and three-dimensional boundary layer behaviour; tip-leakage effects and other losses; dynamics of gas turbine power plants; design and performance of highly loaded turbines; engine noise; stress, deformation, and vibration of compressor and turbine blades and discs; finite element analysis; dynamics of high-speed rotors and failure modes of materials in extreme environments.

Another area of intense research effort in the Department is computer-aided engineering. Activities in this field include computer-aided analysis (including computational fluid dynamics as well as the finite and boundary element methods), computer-aided design, and computer-integrated manufacturing. Projects include thermal and mechanical analysis of welding and casting processes, heat and fluid flow analyses, stress, deformation (manufacturing processes), vibration and fracture mechanics studies, and solids modeling. Computer-aided engineering is well supported by computer hardware and software, including a state-of-the-art network of engineering workstations. The Department has a substantial involvement in the Manufacturing Research Centre of Ontario.

As part of the faculty interest in transportation, the Department is active in research on air and ground vehicle technology. Current studies include computational methods for steady and unsteady flows over complex configurations; effects of roughness on aerodynamic performance; aircraft noise; boundary layer separation and control; propeller and rotor aerodynamics and noise. The Transport Technology Research Laboratory has been organized for ground transport studies; design and optimization of off-road vehicles; vehicle safety; anti-lock braking systems; vehicle-terrain interaction; effect of vibration on vehicle performance; dynamics of air-cushion and magnetically levitated vehicles and composite and structural elements.

Members of the Department are engaged in research on vario us aspects of energy conversion, storage, and utilization. In addition to the previously mentioned work on gas turbines, research is being undertaken on nuclear energy, effectiveness of energy end-use, and behaviour in wind of energy-conserving cladding systems for buildings. In the nuclear energy field, research is being undertaken in heat transfer and fluid flow aspects of CANDU and SLOWPOKE reactors, with a major effort on thermohydraulic problems in reactor safety. Work is also in progress on reactor safety in general, with a special emphasis on risk. Research activities in this field also include studies on the utilization of CANDU reactors for thermal energy supply as well as electrical generation, and on applications of up-rated SLOWPOKE reactors to low-temperature industrial heating and to building energy needs. Research is being carried out into the structural integrity of CANDU reactor components in the form of evaluations of non-destructive testing methods suitable for zirconium alloy specimens.

Another area of interest is in design, manufacturing, and materials technology; in particular, there are programs on the properties of welded joints, heat treatment and forming studies.

The departmental laboratories are well equipped for the various research activities described above, and these are supported by a machine shop, electronics shop, and extensive computing facilities mentioned earlier.

The extensive laboratory facilities of the National Research Council, and of the Department of Resources Canada are also used, by special arrangement, for research and graduate studies of mutual interest. Strong contacts are maintained with the gas turbine, aircraft, and nuclear power industries.

Graduate Courses

Not all of the following courses are offered in a given year. For an up-to-date statement of course offerin gs for 2004-2005 and to determine the term of offering, consult the Registration Instructions and Class Schedule booklet, published in the summer and also available online at

Course Designation System

Carleton's course designation system has been restructured. The first entry of each course description below is the new alphanumeric Carleton course code, followed by its credit value in brackets. The old Carleton course number (in parentheses) is included for reference, where applicable.

University of Ottawa course numbers (in parentheses) follow the Carleton course number and credit information.

MECH 5000 [0.5 credit] (formerly 88.500) (MCG 5300)
Fundamentals of Fluid Dynamics
Differential equations of motion. Viscous and inviscid regions. Potential flow: superposition; thin airfoils; finite wings; compressibility corrections. Viscous flow: thin shear layer approximation; laminar layers; transition; turbulence modeling. Convective heat transfer: free versus forced convection; energy and energy integral equations; turbulent diffusion. Also offered at the undergraduate level, with different requirements, as AERO 4302, for which additional credit is precluded.
MECH 5001 [0.5 credit] (formerly 88.501) (MCG 5301)
Theory of Viscous Flows
Navier-Stokes and boundary layer equations; mean flow equations for turbulent kinetic energy; integral formulations. Stability, transition, turbulence, Reynolds stresses; separation. Calculation methods, closure schemes. Compressibility, heat transfer, and three-dimensional effects.
MECH 5003 [0.5 credit] (formerly 88.503) (MCG 5303)
Incompressible Non-Viscous Flow
The fundamental equations and theorems for non-viscous fluid flow; solution of two-dimensional and axisymmetric potential flows; low-speed airfoil and cascade theory; wing lifting-line theory; panel methods.
MECH 5004 [0.5 credit] (formerly 88.504) (MCG 5304)
Compressible Non-Viscous Flow
Steady isentropic, frictional, and diabatic flow; shock waves; irrotational compressible flow, small perturbation theory and similar ity rules; second-order theory and unsteady, one-dimensional flow.
MECH 5008 [0.5 credit] (formerly 88.508) (MCG 5308)
Experimental Methods in Fluid Mechanics
Fundamentals of techniques of simulation of fluid dynamic phenomena. Theoretical basis, principles of design, performance and instrumentation of ground test facilities. Applications to aerodynamic testing.
MECH 5009 [0.5 credit] (formerly 88.509) (MCG 5309)
Environmental Fluid Mechanics Relating to Energy Utilization
Characteristics of energy sources and emissions into the environment. The atmosphere; stratification and stability, equations of motion, simple winds, mean flow, turbulence structure and dispersion near the ground. Flow and dispersion in groundwater, rivers, lakes and oceans. Physical and analytical modeling of environmental flows.
MECH 5100 [0.5 credit] (formerly 88.510) (MCG 5310)
Performance and Economics of Aircraft
Aircraft performance analysis with emphasis on factors affecting take-off, landing and economic performance; high lift schemes; operating economics.
MECH 5101 [0.5 credit] (formerly 88.511) (MCG 5311)
Dynamics and Aerodynamics of Flight
Static stability theory. Euler's equations for rigid body motion; the linearized equations of motion; stability derivatives and their estimation. Longitudinal and lateral dynamic response of an aircraft to control and disturbance. Also offered at the undergraduate level, with different requirements, as AERO 4308, for which additional credit is precluded.
MECH 5104 [0.5 credit] (formerly 88.514) (MCG 5314)
Ground Transportation Systems and Vehicles
Performance characteristics, handling and directional stability, ride comfort and safety of various types of ground vehicle systems including road vehicles, terrain-vehicle systems, guided transport systems, and advanced ground transport technology.
MECH 5105 [0.5 credit] (formerly 88.515) (MCG 5315)
Orbital Mechanics and Space Control
Orbital dynamics and perturbations due to the Earth's figure, the sun, and the moon with emphasis on mission planning and analysis. Rigid body dynamics applied to transfer orbit and on-orbit momentum management and control of spacecraft. Effects of flexible structures on a spacecraft control system.
MECH 5106 [0.5 credit] (MCG 5121)
Space Mission Analysis and Design
Review of solar system and space exploration. Space mission design and geometry. Analysis of orbit design, transfers, interplanetary trajectories. Effect of environment on spacecraft design. Space propulsion and launch vehicle design. Launch sequence, windows, cost. Reusable launch systems. Also offered at the undergraduate level, with different requirements, as AERO 4802.
Precludes additional credit for 86.496 (Section B) if taken between 1994-1995 and 2001-2002 inclusive, MAAE 4906 (Section B) taken between 2002-2003 and 2003-2004 inclusive, MECH 5805 taken between 2002-2003 and 2003-2004 inclusive, 88.570 (Section L) taken between 1994-1995 and 1996-1997 inclusive, and 88.585 taken between 1999-2000 and 2001-2002 inclusive.
MECH 5107 [0.5 credit] (formerly 88.517) (MCG 5317)
Experimental Stress Analysis
Introduction to theory of elasticity. Photo-elasticity: types of polariscopes, two- and three-dimensional stress fields, frozen patterns. Photoelastic coatings. Strain gauges; gauge factors, sensitivity, calibration, and temperature compensation. Moire fringes, brittle lacquers, mechanical strain gauges.
MECH 5201 [0.5 credit] (formerly 88.521) (MCG 5321)
Methods of Energy Conversion
Technical, economic and environmental aspects of present and proposed large-scale systems of energy conversion.
MECH 5202 [0.5 credit] (MCG 5122)
Smart Structures
Structur al dynamics principles: modal analysis and wave propagation. Linear time invariant systems: feedback, feedforward, SISO, MIMO, digital and adaptive filters. «Smart» Structures: multifunctional materials, collocation principles, geometric filtering, and control authority. Applications in aero-acoustics and aeroelasticity.
Precludes additional credit for MECH 5807 (if taken 2002-2003 or 2003-2004), 88.587F (if taken 2001-2002).
MECH 5300 [0.5 credit] (formerly 88.530) (MCG 5330)
Engineering Acoustics
Review of acoustic waves in compressible fluids; acoustic pressure, intensity and impedance; physical interpretation and measurement; transmission through media; layers, in-homogeneous media, solids; acoustic systems; rooms, ducts, resonators, mufflers, properties of transducers; microphones, loudspeakers, computational acoustics.
MECH 5301 [0.5 credit] (formerly 88.531) (MCG 5331)
The convected wave equation; theory of subsonic and supersonic jet noise; propeller and helicopter noise; fan and compressor noise; boundary layer noise, interior noise; propagation in the atmosphere; sonic boom; impact on environment.
MECH 5302 [0.5 credit] (formerly 88.532) (MCG 5332)
Instrumentation Techniques
An introduction for the non-specialists to the concepts of digital and analog electronics with emphasis on data acquisition, processing and analysis. Topics covered include operational amplifiers, signal processing, digital logic systems, computer interfacing, noise in electronic systems. Hands-on sessions illustrate theory and practice.
MECH 5304 [0.5 credit] (formerly 88.534) (MCG 5334)
Computational Fluid Dynamics of Compressible Flows
Solution techniques for parabolic, elliptic and hyperbolic equations developed for problems of interest to fluid dynamics with appropriate stability considerations. A staged approach to solution of full Euler an d Navier-Stokes equations is used. Grid generation techniques appropriate for compressible flows are introduced.
MECH 5401 [0.5 credit] (formerly 88.541) (MCG 5341)
Types of machines. Similarity: performance parameters; characteristics; cavitation. Velocity triangles. Euler equation: impulse and reaction. Radial pumps and compressors: analysis, design and operation. Axial pumps and compressors: cascade and blade-element methods; staging; off-design performance; stall and surge. Axial turbines. Current design practice. Also offered at the undergraduate level, with different requirements, as MECH 4305, for which additional credit is precluded.
MECH 5402 [0.5 credit] (formerly 88.542) (MCG 5342)
Gas Turbines
Interrelationship among thermodynamic, aerodynamic, and mechanical design. Ideal and real cycle calculations. Cycle optimization; turbo-shaft, turbojet, turbofan. Component performance. Off-design performance; matching of compressor, turbine, nozzle. Twin-spool matching.
MECH 5403 [0.5 credit] (formerly 88.543) (MCG 5343)
Advanced Thermodynamics
The course covers three major topics: review of fundamentals from a consistent viewpoint, properties and equations of state, and applications and special topics. The third topic includes an introduction to statistical thermodynamics.
MECH 5407 [0.5 credit] (formerly 88.547) (MCG 5347)
Conductive and Radiative Heat Transfer
Analytical, numerical and analog solutions to steady-state and transient conduction heat transfer in multi-dimensional systems. Radiative heat exchange between black, grey, non-grey diffusive and specular surfaces, including effects of athermanous media.
MECH 5408 [0.5 credit] (formerly 88.548) (MCG 5348)
Convective Heat and Mass Transfer
Analogies between heat, mass and momentum transfer. Forced and free convection relations for lamina r and turbulent flows analytically developed where possible and otherwise deduced from experimental results, for simple shapes and in heat exchangers. Mass transfer theory and applications.
MECH 5500 [0.5 credit] (formerly 88.550) (MCG 5350)
Advanced Vibration Analysis
General theory of continuous and discrete multi-degree-of-freedom vibrating systems. Emphasis on numerical techniques of solving complex vibrating systems, with selected applications from aerospace, civil, and mechanical engineering.
MECH 5501 [0.5 credit] (MCG 5125)
Advanced Dynamics
Developing and applying the governing equations of motion for discrete and continuous mechanical systems. Includes Newton-Euler and Lagrangian formulations; classical and finite element approaches for continuous systems; and linear stability, frequency response, and propagation solution methods.
Precludes additional credit for MECH 5500 (if taken 2001-2002, 2002-2003).
MECH 5502 [0.5 credit] (formerly 88.552) (MCG 5352)
Optimal Control Systems
Review of transfer function and state-space system descriptions. Elements of the optimal control problem. Variational calculus. Optimal state feedback control. Riccati equations. Optimal observers and Kalman-Bucy Filters. Extension to discrete time systems including an introduction to dynamic programming. Practical applications are emphasized throughout the course.
MECH 5503 [0.5 credit] (formerly 88.553) (MCG 5353)
The history of and introduction to robotics methodology. Robots and manipulators; homogeneous transformation, kinematic equations, solving kinematic equations, differential relationships, motion trajectories, dynamics. Control; feedback control, compliance, servomotors, actuators, external and internal sensors, grippers and vision systems. Microprocessors and their application to robot control. Programming.
MECH 5504 [0.5 credit] (formerly 88.554) (MCG 5354)
Guidance, Navigation and Control
Guidance system classification, flight control systems, targeting, target tracking, sensing. Modern multivariable control analysis; design requirements, sensitivity, robustness, perturbations, performance analysis. Modern filtering and estimation techniques. Terrestrial navigation; tactical air navigation (TACAN), star trackers Guidance mission and performance. Aircraft, missile and spacecraft guidance and control.
MECH 5505 [0.5 credit] (formerly 88.555) (MCG 5355)
Stability Theory and Applications
Fundamental concepts and characteristics of modern stability definitions. Sensitivity and variational equations; linear variational equations; phase space analysis; Lyapunov's direct method. Autonomous and nonautonomous systems; stability in first approximation; the effect of force type on stability; frequency method.
MECH 5506 [0.5 credit] (formerly 88.556) (MCG 5356)
Neuro and Fuzzy Control
Knowledge-based controllers. Fuzzy control: mathematics, relations, operations, approximate reasoning. Fuzzy knowledge base control and structure. Fuzzification, inference engine, defuzzification. Nonlinear, adaptive fuzzy control systems. Stability, Neuro-control: processing, learning. Adaptation of artificial neural systems: associative memories, algorithms, applications, and network implementation. Neurofuzzy systems: industrial applications.
Precludes additional credit for EACJ 5709 (ELG 5196).
MECH 5507 [0.5 credit] (MCG 5124)
Advanced Kinematics
Algebraic-geometry applications: kinematic calibration of serial and in-parallel robots; kinematic synthesis of planar, spherical, spatial mechanisms. Various DH-parametrisations, Jacobian formulations. Topics in: projective geometry; Cayley-Klein geometries; Plücker line coordinates; Grübner bases; Grassmannians; kinematic mapping; Burmester theory. Emphasis on pract ical applications.
MECH 5601 [0.5 credit] (formerly 88.561) (MCG 5361)
Creative Problem Solving and Design
Problem-solving processes and how they can be applied in engineering design. Emphasis on learning methodologies rather than accumulating information. Techniques can be successfully applied in any engineering specialty. (Also listed as IDES 5301.)
MECH 5602 [0.5 credit] (formerly 88.562) (MCG 5362)
Failure Prevention (Fracture Mechanics and Fatigue)
Design of engineering structures to ensure against failure due to fatigue or brittle fracture. Nature of fatigue and brittle fracture; selection of suitable material, geometry, and inspection procedures for the load and environmental conditions.
MECH 5603 [0.5 credit] (formerly 88.563) (MCG 5381)
Lightweight Structures
Structural behaviour. Fundamentals of basic elasticity. Energy methods of structural analysis. Bending, shear, and torsion of open and closed multicell structures. Bending of plates. Structural idealization and its effects on open and closed sections. Structural stability.
MECH 5604 [0.5 credit] (formerly 88.564) (MCG 5364)
Computational Metallurgy
Development of microstructure in alloys in solidification processes and post-solidification processing. Nucleation and growth of solid phase. Formation of a dendrite structure, macro and micro segregations. Pore formation in castings. Thermodynamic and kinetics of phase transformations and structure evolution in solid alloys.
MECH 5605 [0.5 credit] (formerly 88.565) (MCG 5365)
Finite Element Analysis I
An introduction to the finite element methodology, with emphasis on applications to heat transfer, fluid flow and stress analysis. The basic concepts of Galerkin's method, interpolation, numerical integration, and isoparametric elements are taught using simple examples.
MECH 5606 [0.5 credit] (forme rly 88.566) (MCG 5366)
Finite Element Analysis II
Time marching heat flow problems with linear and nonlinear analysis. Static plasticity. Time-dependent deformation problems; viscoplasticity, viscoelasticity, and dynamic analysis. Isoparametric elements and numerical integration are used throughout.
MECH 5607 [0.5 credit] (formerly 88.567) (MCG 5367)
The Boundary Integral Equation (BIE) Method
Integral equations. The BIE for potential theory and for elastostatics in two-dimensions. Boundary elements and numerical integration schemes. Practical applications.
MECH 5608 [0.5 credit] (formerly 88.568) (MCG 5368)
Advanced Engineering Materials
The physical metallurgy of important engineering metals and alloys: analytical techniques, crystallography and structure of alloys, dislocation interactions and dissociation, metallurgical thermodynamics and transformations and strengthening mechanisms. Highlights the physical phenomena controlling the properties.
Prerequisite: MECH 2700 or the equivalent.
MECH 5609 [0.5 credit] (MCG 5123)
Microstructure and Properties of Materials
Essential microstructural features of metals and alloys: crystal structure, dislocations, grain boundaries. The importance of these features in controlling mechanical properties is emphasized. Analytical techniques observing microstructure in metals and other materials: TEM, SEM, electron diffraction, spectrometry.
Precludes additional credit for MECH 5804 (if taken 2002-2003, 2003-2004)
MECH 5704 [0.5 credit] (formerly 88.574) (MCG 5374)
Computer-Integrated Manufacturing Systems (CIMS)
Topics essential to CIMS including computer graphics, geometric modeling, numerically controlled machining, and flexible manufacturing. The fundamental data structures and procedures for computerization of engineering design, analysis and production. Also offered at t he undergraduate level, with different requirements, as MECH 4704, for which additional credit is precluded.
MECH 5705 [0.5 credit] (formerly 88.575) (MCG 5375)
Computer aided design and manufacturing methodology through hands-on experience and state-of-the-art software. Topics include mathematical representation, solid modeling, drafting, mechanical assembly, mechanism design and CNC machining. CAD data exchange standards, rapid prototyping, concurrent engineering and design for X are also discussed.
MECH 5800 [0.5 credit] (formerly 88.580)
(MCG 5480I)
Special Topics in Mechanical and Aerospace Engineering
Topic for 2004-2005: Gas Turbine Combustion. The course covers two major topics: combustion fundamentals and combustor design. Combustion fundamentals include chemistry of combustion, chemical kinetics, and emissions formation. Combustor design will address the interrelationship between design requirements and combustion fundamentals.
MECH 5801 [0.5 credit] (formerly 88.581) (MCG 5489I)
Special Topics in Mechanical and Aerospace Engineering
Topic for 2004-2005: Biomechanics. Human anatomy and physiology with an emphasis on artificial organ and prosthetic device design requirements. Application of engineering principles to cells and tissues, biofluid mechanics, human body energetics, measurement techniques, mechanics of the musculoskeletal, circulatory and pulmonary systems. Emphasis on the artificial heart. Also offered at the undergraduate level, with different requirements, as MAAE 4906, for which additional credit is precluded.
MECH 5802 [0.5 credit] (formerly 88.582)
(MCG 5483I)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
MECH 5803 [0.5 credit] (formerly 88.583) (MCG 5488I)
Special Topics in Mechanical and Aerospace Engineering
Topic for 2004-2005: Tribolo gy. Offered for graduate students in engineering departments. Application of the tribological approach to solving engineering problems. Tribology - the study of friction, wear, and lubrication. Theoretical subjects are illustrated with «case studies».
MECH 5804 [0.5 credit] (formerly 88.584) (MCG 5384I)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
MECH 5805 [0.5 credit] (formerly 88.585) (MCG 5482I)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
MECH 5806 (formerly 88.586) [0.5 credit]
(MCG 5486I)
Special Topics in Mechanical and Aerospace Engineering
Topic for 2004-2005: Continuum Thermodynamics. Equilibrium and non-equilibrium thermodynamics as a field theory. Topics include: conditions of equilibrium, Gibbs-Duhem relation, Legendre transforms and their use, Maxwell relations with simple applications, concept of local equilibrium, hydrodynamic equations, phenomenological relations. Applications to both simple and more complex systems.
Prerequisite: Undergraduate courses in matrix algebra, calculus of several variables, ordinary differential equations.
MECH 5807 (formerly 88.587) [0.5 credit]
(MCG 5387I)
Special Topics in Mechanical and Aerospace Engineering
Topic will vary from year to year.
MECH 5906 [0.5 credit] (formerly 88.596) (MCG 5395)
Directed Studies
MECH 5908 [1.5 credits] (formerly 88.598) (MCG 5398)
Independent Engineering Study
Students pursuing a master's degree by course work carry out an independent study, analysis, and solution of an engineering problem or design project. The results are given in the form of a written report and presented at a departmental seminar. Carried out under the general direction of a faculty member.
MECH 5909 [2.0 credits] (formerly 88.599)
M.A. Sc. Thesis
MECH 6909 (formerly 88.699) [8.5 credits]
Ph.D. Thesis

Other Courses of Particular Interest

Civil and Environmental Engineering

CIVE 5101, CIVE 5102, CIVE 5103, CIVE 5204, CIVE 5304, CIVE 5602

Mathematics and Statistics

MATH 4806 Numerical Analysis
MATH 5806


PHYS 4407 Statistical Physics
PHYS 5101

Systems and Computer Engineering

SYSC 5001, SYSC 5004, SYSC 5005, SYSC 5401, SYSC 5402, SYSC 5502, SYSC 5503
© 2021 Carleton University 1125 Colonel By Drive, Ottawa, ON, K1S 5B6 Canada | (613) 520-7400 Contact | Privacy Policy