Information and Systems Science Committee

See the Department of Mathematics and Statistics; Department of Systems and Computer Engineering; or the School of Computer Science

The Committee

Chair of the Committee: Frantisek Fiala

The program of graduate study and research leading to the degree of Master of Science in Information and Systems Science is offered by the Committee with cooperation of the Department of Systems and Computer Engineering, the Department of Mathematics and Statistics, and the School of Computer Science.

The purpose of the program is to provide training in the use and application of computers to those who have not studied extensively in this field at the undergraduate level. The process of using the computer in problem-solving is stressed. The program is flexible, though individual concentrations are usually in one of three broad areas:

- computer applications in a particular field (e.g. communications, energy systems)
- algorithms and methodologies for solution of complex problems by computer (e.g. graph theory, operations research, optimization, simulation and modelling)
- computer methods and technologies (e.g. databases, software engineering, computer languages)

Close links are maintained with the scientific, industrial, and technological communities, and an effort is made to direct students to project work of current practical significance.

Qualifying-Year Program

Applicants who have a general (pass) bachelor's degree, or who otherwise lack the required undergraduate preparation, may be admitted to a qualifying-year program. Refer to the general section of this calendar for regulations governing the qualifying year.

Master of Science

Admission Requirements

Applicants should have an honours bachelor's degree, or equivalent, with at least high honours standing, in mathematics, engineering, physics, chemistry, computer science, op-

erations research, experimental psychology, econometrics, management science, or a related discipline. Undergraduate preparation should include at least two full courses in computing and a minimum of three full courses in mathematics, at least one of which is at the third-year level or higher. In addition, the student is required to have some knowledge of quantitative applications, such as numerical analysis, simulation, operations research, etc.

Admissions to the program will be made through one of the three participating departments. Since space and laboratory facilities will be provided by one of the departments, students should apply through the department with which they wish to be most closely associated.

Program Requirements

The normal program comprises eight half courses and a thesis having a weight of one and one half full courses; additional requirements may also be stipulated, depending upon the individual student's background. With the approval of the Committee, students who have substantial work experience may be permitted to substitute three additional half courses in place of the thesis, one of which must be a graduate project course.

Students must take at least two half courses from the department in which they are registered, and at least one half course from each of the other two participating departments. Students must also take course 93.582 Introduction to Information and Systems Science.

Each student should consult with his/her faculty adviser in the selection of a course pattern related to his/her principal area of interest.

Each candidate submitting a thesis will be required to undertake an oral examination on the subject of his/her thesis.

Course work may be completed on either a full-time or part-time basis. Thesis research normally requires full-time residence at the University; however, a candidate may be permitted to carry out thesis work off campus provided that suitable arrangements are made for supervision and experimental work, and prior approval is given by the Committee.

Graduate Courses

- Information and Systems Science 93.582F1 Introduction to Information and Systems Science An introduction to the process of applying computers in problem solving. Emphasis is placed on the design and analysis of efficient computer algorithms for large, complex problems. Applications in a number of areas are presented: data manipulation, databases, computer networks, queuing systems, optimization. (Also listed as Mathematics 70.582, Engineering 94.582, Computer Science 95.582)
- Information and Systems Science 93.598F3, W3, S3 M.Sc. Thesis in Information and Systems Science (Also listed as Mathematics 70.598, Engineering 94.598, Computer Science 95.598)

Department of Mathematics and Statistics				
Indergraduate Courses				
0.301	Real Analysis			
0.302	Advanced Calculus			
0.310	Modern Algebra			
0.350	Mathematical Statistics			
0.403	Functional Analysis			
0.451	Probability Theory			
0.452	Survey Sampling			
0.453	Applied Multivariate Analysis			
0.456	Non-Parametric Methods			
0.457	Statistical Inference			
0.458	Stochastic Models			
0.459	Topics in Stochastic Optimization and			
	Advanced Mathematical Modelling			
0.470	Partial Differential Equations			
0.471	Topics in Partial Differential Equations			
0.473	Qualitative Theory of Ordinary			
	Differential Equations			
0.481	Topics in Combinatorics			
0.482	Introduction to Mathematical Logic			
0.483	Computable Functions			
0.485	Theory of Automata			
0.486	Numerical Linear Algebra			
0.487	Game Theory			
0.488	Graph Theory and Algorithms			
0.496	Directed Studies			
Graduate	Courses:			
0.507	Real Analysis I (Measure Theory and			
	Integration)			
0.508	Real Analysis II (Functional Analysis)			
0.517	Algebra I			
0.519	Algebra II			
0.552	Sampling Theory and Methods			
0.553	Linear Models			

70.554	Stochastic Processes and Time Series	
	Analysis	
70.555	Design of Experiments	
70.556	Robust Statistical Inference	
70.557	Advanced Statistical Inference	
70.558	Topics in Stochastic Processes	
70.559	Multivariate Analysis	
70.561	Stochastic Optimization	
70.565	Theory of Automata	
70.567	Game Theory	
70.569	Topics in Combinatorial Mathematics	
70.571	Stochastic Models	
70.581	Linear Optimization	
70.583	Nonlinear Optimization	
70.584	Topics in Operations Research	
70.585	Topics in Algorithm Design	
70.586	Numerical Analysis	
70/95.587	Formal Language and Syntax Analysis	
70.588	Combinatorial Optimization	
70.589	Combinatorial Optimization	
70.590	Seminar	
70.591	Directed Studies	
70.593	Project	
Denartr	nent of Systems and Computer	
Engineering		

Undergr	raduate Courses:
94.303	Introduction to Real-Time Systems
94.310	Systems Analysis
94.333	Real-Time Concurrent Systems
94.351	Communication Theory
94.361	Microprocessor Systems
94.401	Operating Systems
94.405	Discrete Simulation and its Applications
94.445	
94.457	Architecture of Computer Systems
94.460	Digital Communications
94.462	Introduction to Computer Communication
94.480	Software Engineering
94.481	Software Engineering Project
94.485	Computer Systems Design Laboratory
Graduat	re Courses
94.501	Simulation and Modelling
94.504	Mathematical Programming for
	Engineering Applications
94.505	Optimization Theory and Methods
94/95.50	77 Expert Systems
94.511	Computer System Design for
	Performance
94.517	Queuing Systems

Topics in Information Systems

Distributed Processing Systems

Teletraffic Engineering

Computer Communication

System Design with Ada

94.518 94.519

94.521

94.527

94.531

94.535	Representations, Methods and Tools for	95.409	Introduction to Parallel and Systolic
	Concurrent Systems		Computing
94.538	Computer Architecture and Parallel	Graduat	e Courses:
	Processing	95.501	Foundations of Programming Languages
94.541	Adaptive Control	95.502	User Interface Facilities
94.542	Advanced Dynamics with Applications	95.503	Principles of Distributed Computing
04.550	to Robotics	95.504	Topics in Arithmetic Complexity
94.552	Advanced Linear Systems	95.505	Automata Models of Learning Systems
94.553	Stochastic Processes	95.506	Natural Language Understanding
94.554	Principles of Digital Communication		7 Expert Systems
94.557	Fundamentals of Discrete Systems	95.508	Computational Geometry
94.558	Digital Systems Architecture	95.509	Associative Data Structures and
94.560	Adaptive Signal Processing	,	Advanced Databases
94.561	Neural Signal Processing	95.510	Topics in Artificial Intelligence
94.562	Digital Signal Processing	95.511	Distributed Databases and Transaction
94.563	Digital Signal Processing	,0.011	Processing Systems
	Microprocessors, Software and	95.512	Distributed Operating Systems
04.564	Applications	95.513	Cryptography
94.564	Advanced Topics in Digital Signal	95.514	Object-Oriented Systems
	Processing: Speech Communications and	95.515	Parallel Processing Systems
04.565	Applications	95.516	Languages for Parallel Computing
94.565	Advanced Digital Communication	95.520	Cerebral Computations
94.566	Theory of Communication Channels	95.522	Network Reliability
94.567	Source Coding and Data Compression	95.573	Algorithm Analysis and Design
94.568	Mobile Communications Systems	95.574	Parallel Algorithms and their VLSI
94.569	Digital Television		Implementation
94.571	Operating System Methods for Real-time Applications	Due to th	ne interdisciplinary nature of ISS, a student
94.573	Integrated Database Systems		me cases benefit by taking an undergraduate
94.574	Elements of Computer Systems		t the 300 or 400 level as part of his/her
94.576	Analytical Performance Models of		. Where a 300 level course is to be taken, it
<i>y</i> , o	Computer Systems		extra to the degree requirements, or else
94.577	Teleprocessing Software Design	_	nents will be made to enrich the subject
94.579	Advanced Topics in Software		ormally through a directed study course
<i>y</i> ,	Engineering		professor. Students may include two half
94.581	Advanced Topics in Computer		at the 400 level in their program without
	Comunications	-	with the approval of the department. The
94.583	Logic Programming		400 level courses listed here are those most
94.584	Advanced Topics in Communications		interest ISS students; see the <i>Undergraduate</i>
	Systems		er for a complete list. ISS students are
94.585	Logic Programming: Techniques and		ed from taking course 95.484 Design and
	Applications	•	s of Algorithms due to overlap of course
94.596	Directed Studies	material	with 93.582.
C - 1 1	of Computer Science		

School of Computer Science

Undergr	aduate Courses
05 200	Omanatina Cris

95.300	Operating Systems
95.304	Software Systems Design
95.305	Database Management Systems
95.401	Concurrent Programming
95.402	Computer Graphics
95.403	Transaction Processing Systems
95.405	A First Course in Robotics and Computer
	Vision
95.407	Applied Artificial Intelligence
95.408	Performance Modelling