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Abstract

Evidence is building to suggest that both chronic and acute warm temperature exposure, as well as other anthropogenic
perturbations, may select for small adult fish within a species. To shed light on this phenomenon, we investigated
physiological and anatomical attributes associated with size-specific responses to an acute thermal challenge and a fisheries
capture simulation (exercise+air exposure) in maturing male coho salmon (Oncorhynchus kisutch). Full-size females were
included for a sex-specific comparison. A size-specific response in haematology to an acute thermal challenge (from 7 to
20uC at 3uC h21) was apparent only for plasma potassium, whereby full-size males exhibited a significant increase in
comparison with smaller males (‘jacks’). Full-size females exhibited an elevated blood stress response in comparison with
full-size males. Metabolic recovery following exhaustive exercise at 7uC was size-specific, with jacks regaining resting levels
of metabolism at 9.360.5 h post-exercise in comparison with 12.360.4 h for full-size fish of both sexes. Excess post-exercise
oxygen consumption scaled with body mass in male fish with an exponent of b = 1.2060.08. Jacks appeared to regain
osmoregulatory homeostasis faster than full-size males, and they had higher ventilation rates at 1 h post-exercise. Peak
metabolic rate during post-exercise recovery scaled with body mass with an exponent of b,1, suggesting that the slower
metabolic recovery in large fish was not due to limitations in diffusive or convective oxygen transport, but that large fish
simply accumulated a greater ‘oxygen debt’ that took longer to pay back at the size-independent peak metabolic rate of
,6 mg min21 kg21. Post-exercise recovery of plasma testosterone was faster in jacks compared with full-size males,
suggesting less impairment of the maturation trajectory of smaller fish. Supporting previous studies, these findings suggest
that environmental change and non-lethal fisheries interactions have the potential to select for small individuals within fish
populations over time.
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Introduction

Evidence exists to suggest that both chronic and acute warm

temperature exposure may benefit small animal species and small

adult individuals within a species [1,2,3,4,5]. A negative correla-

tion between the thermal environment and body size was first

proposed over 160 years ago when Bergmann [6] documented this

phenomenon for endothermic vertebrates over a large spatial

scale. Since then, the topic has been heavily debated while

scientists have strived to confirm the phenomenon, provide a

mechanism, and extend the concept to ectothermic vertebrates

[1,3,7,8,9].

For fishes, climate change and variability are altering species

distributions as populations respond to warming waters (e.g., [10]),

and there is some correlative evidence to suggest intraspecific

selection based on thermal interactions with body size [1,11]. A

study of Chinook salmon (Oncorhynchus tshawytscha) suggested that

small individuals may be more tolerant of an acute thermal

challenge than larger conspecifics [5], which has important

ecological implications for all Pacific salmonids since they can

experience abrupt and extreme temperature challenges during

their freshwater migrations. Since the majority of information on

the interaction between temperature tolerance and animal size

stems from descriptive observations rather than controlled studies,
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contention surrounds the physiological mechanisms underlying the

observed trends (e.g., see [8]).

An additional challenge faced by many fish species is the

increasing likelihood of interaction with commercial or recrea-

tional fisheries. Fisheries capture may result in direct mortality,

although fish commonly escape following contact with fishing

gear, or they are intentionally released as bycatch or through

catch-and-release fisheries. Fishes can encounter similar stressors

under natural conditions, such as during non-lethal interactions

with animal predators (e.g., seals, birds, bears). Released or

escaped fish must physiologically recover from the encounter or

risk mortality [12]. Since many retention fisheries are regulated

based on fish size, it is of importance to understand whether body

size plays a role in post-release recovery and survival, yet no

previous study has investigated this possibility.

Given the sparse dataset concerning these issues, the present

study sought to explore a range of physiological and anatomical

attributes that might benefit small individuals within a species

when exposed to an acute thermal challenge or a simulated

fisheries/predator encounter. Attention was focussed on the

oxygen transport system and blood chemistry, as these have been

previously implicated in determining the tolerance of fishes to

various environmental challenges [4,13,14]. Coho salmon (Onco-

rhynchus kisutch) was chosen as the model species for several reasons:

(1) freshwater and marine ecosystems utilised by coho salmon have

warmed, and fish now have a greater probability of acutely

encountering higher river temperatures than at any point since

records began in the 1940s [15,16,17], (2) coho salmon can

experience marked and rapid thermal increments throughout their

lifecycle [18,19], (3) significant intergenerational declines in adult

body mass have occurred over time in wild populations of this

species [20,21], (4) coho salmon is a target species for fisheries and

large predators including bears and seals, (5) mandatory release

exists for some populations of imperilled coho salmon incidentally

caught as bycatch in other fisheries ([22] and references within),

and (6) the species displays a diverse range in life history strategies

that leads to significant variation in adult body size, which

provides a novel opportunity to examine the intraspecific effects of

body size on fish at the same stage of sexual maturation.

Materials and Methods

Animals
Mature coho salmon (Oncorhynchus kisutch) were dip-netted

throughout October and November in 2009 and 2010 as they

completed their 140 km upstream migration from the Pacific

Ocean to their natal rearing location at the Chehalis River

Hatchery (British Columbia, Canada), where they had been

released previously as one year old fish. Following their first year in

freshwater, most individuals spend 1.5–2.5 years foraging in the

marine environment prior to returning to their natal freshwater

rearing location as 2.5–3.5 year-olds (,1.5–6 kg; 53–83 cm fork

length [FL]), yet some individuals (primarily males) mature and

return to the rearing location after only 6 months in the ocean and

at a much smaller body size (0.20–0.65 kg; 26–39 cm FL). Full-

size males (2.5–3.5 years old) and precocious males (1.5 years old;

hereafter referred to as ‘jacks’) were used in the present study to

investigate the effects of body size (fish age was accurately

estimated from fish size, as determined by scale analyses; Steve

Latham, Pacific Salmon Commission, BC, Canada). Full-size

females were also used to examine for sex-specific differences in

full-size fish. Precocious females can occur but are extremely rare,

and none were encountered throughout the two years in which the

present study was conducted. While it is generally unavoidable to

have age and size covarying when examining intraspecific body

mass (Mb) scaling in fishes, we believe that the male coho salmon

model used here is better than most because the fish are not

feeding/growing and they are at similar stages of reproductive

maturity. All experiments were conducted with the approval of the

Animal Care Committee of the University of British Columbia, in

accordance with the Canadian Council on Animal Care.

Thermal challenge
This protocol was designed to investigate whether jacks

experienced less blood physiological disturbance (i.e., deviations

from control values) than full-size fish when exposed to an acute

thermal challenge. Coho salmon (15–16 fish per trial) were placed

individually into opaque holding tubes equipped with plastic mesh

at each end to allow good flow-through of water. The tubes were

either 90622 cm (length6diameter) for full-size fish or 70612 cm

for jacks. The tubes were evenly (or near-evenly) distributed

between two enclosures, both containing flow-through river water

at ambient temperature (,7uC). The tubes were arranged side-by-

side and also stacked 2–3 high, such that all fish within each

enclosure were housed within a space of ,1.5 m3.

All fish were given 20 h to recover from handling before the

group in one enclosure (warm) was exposed to an acute thermal

challenge while the group in the second enclosure (control)

remained at ambient temperature and acted as a control. A gas-

powered water heating system was used to increase the temper-

ature of the warm enclosure by 3uC h21 from 7 to 20uC, after

which the fish were maintained at 20uC for a further 2 h. At this

point, all fish from the control enclosure (7uC) and warm enclosure

(20uC) were individually removed from the holding tubes,

sacrificed by cerebral concussion, and sampled for blood

(,3 ml) from the caudal vasculature using lithium-heparinised

vacutainers. Extreme care was taken to avoid disturbing each

individual until ,30 s before it was removed and sampled for

blood, as this is known to provide a blood sample that is

uninfluenced by the handling event [23]. An upper temperature of

20uC was chosen on the basis of previous data [18,19,24], since

this was anticipated to maximally test the aerobic capacity of coho

salmon without surpassing upper thermal limits.

Three identical trials were conducted on separate days, giving

total Mb ranges and sample sizes (at 7 and 20uC, respectively) of:

full-size males, Mb = 1.39–4.22 kg, N = 9 and Mb = 1.39–3.71 kg,

N = 7; full-size females, Mb = 2.06–3.35 kg, N = 9 and Mb = 1.31–

3.93 kg, N = 8; jacks, Mb = 0.20–0.51 kg, N = 7 and Mb = 0.22–

0.60 kg, N = 7.

Recovery from exhaustive exercise
The exhaustive exercise protocol was identical to that used

previously [25], and was designed to simulate the exercise stress

associated with fisheries capture (e.g., angling catch-and-release)

and the period of air exposure that typically follows (e.g., for hook

removal, photography, etc). Briefly, individual fish were placed

into a ring-shaped tank (outer diameter 150 cm, inner diameter

50 cm, water depth 40 cm) and manually chased for 3 min, after

which they were exposed to air in a dip-net for 1 min before being

placed into a recovery box (L6W6D = 90650650 cm; water

depth 30 cm) supplied with flow-through river water (50 l min21;

,7uC). The chasing protocol rendered all individuals unable to

continue burst swimming after about 2 min. Sampling took place

at 1, 2, 4, 8 or 19 h post-treatment, when individual fish were

rapidly removed from the recovery box, sacrificed by cerebral

concussion and sampled for blood by caudal puncture as described

above. Full-size fish (both sexes) and jacks were examined. Ten

recovery boxes were used in each trial, and trials were repeated to
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ensure appropriate sample sizes in each size-grouping and sex-

grouping, and at each post-treatment recovery period (sample sizes

in figures). Ventilation rate was measured in a subsample of fish (7

full-size males, 3 full-size females, 10 jacks) at 1 h post-exercise

through a small viewing slit in the lid of each recovery box.

Additional fish (10 full-size males, 12 full-size females, 11 jacks)

underwent the same treatment protocol as above but were placed

individually and immediately into static respirometers (each 138 l)

rather than recovery boxes during the post-treatment recovery

period. This group of fish was not sampled for blood, but rather

remained in the respirometers for 19 h while the rate of oxygen

consumption ( _MMO2) was recorded throughout the entire recovery

period for 15 min every hour. The respirometers and techniques

of measuring _MMO2 were identical to those used previously [13],

except that water temperature remained at 7uC and the water

volume of the respirometers was reduced using plastic-coated

concrete blocks when measuring _MMO2 of jacks. Minimum and

peak oxygen consumption rates ( _MMO2min and _MMO2peak, respec-

tively) were taken as the minimum and maximum values obtained

for each individual throughout the 19 h recovery period, with the

former always occurring after the latter.

Another group of full-size fish (3 males, 3 females) was surgically

implanted with biologgers and given 6 d to recover before

undergoing the exhaustive exercise protocol described above.

Jacks were not used as they were too small to receive a biologger.

Surgical methods were identical to those used previously [26,27].

The biologgers took 10-s samples of the electrocardiogram (ECG)

at 200 Hz every 10 min (details in [26]), which were subsequently

used to calculate heart rate using LabChart software (ADInstru-

ments, Sydney, Australia). This group of fish was not sampled for

blood, but rather remained in the recovery boxes for 17 h so the

biologgers could record the uninterrupted recovery period.

Blood analyses and post-mortem measurements
Blood samples were immediately placed into an ice slurry and

processed within 20 min. Haematocrit (Hct) of whole blood was

measured using micro-capillary tubes spun at 10,0006g for 7 min.

Remaining blood was spun at 7,0006g for 7 min and then the

plasma was collected in cryogenic vials and stored in liquid

nitrogen prior to being transferred to a 280uC freezer for

subsequent analyses.

Single plasma measurements were made of lactate and glucose,

with an internal calibration performed every five samples (YSI

2300 stat plus analyser; www.ysilifesciences.com). Plasma mea-

surements were made in duplicate of cortisol (Neogen ELISA with

Molecular Devices Spectramax 240 pc plate reader, Lexington,

Kentucky, U.S.A.), osmolality (Advanced Instruments 3320

freezing point osmometer), chloride (Haake Buchler digital

chloridometer), sodium and potassium (Cole-Parmer, model 410

single channel flame photometer) (see [28] for further details). The

hormones testosterone and 17b-estradiol (the latter measured for

females only) were assayed in duplicate after appropriate dilution

and ether extraction (Neogen ELISA, Lexington, Kentucky,

U.S.A.).

Selected fish underwent post-mortem dissection to measure

organ weights. The gonads, spleen, liver and ventricle were

removed and weighed following removal of excess blood. For some

fish (including additional fish to those used in the above

experiments), an incision was made around the perimeter of the

opercular cavity and the entire gill basket was removed, rinsed,

blotted and weighed. For six fish (3 full-size males, 3 jacks), a

section of gill was removed immediately after death (first gill arch,

left hand side) and fixed in 10% acetate-buffered formalin. The gill

samples were subsequently dehydrated in an ethanol series and

embedded in paraffin wax, before being sectioned at 5–8 mm and

stained with Masson’s trichrome. Images were taken for histolog-

ical comparisons using an Olympus Provis AX70 microscope

(Tokyo, Japan) in combination with a AxioCam HRc cooled CCD

camera (Carl Zeiss, Jena, Germany). AxioVision software (Carl

Zeiss, Jena, Germany) was used to measure the following variables.

Blood-water diffusion distance, maximum erythrocyte diameter

(targeting intact, uniform cells), and gill lamellae diameter were

measured in images taken at 406magnification. Gill lamellae

length and interlamellar distance were measured in images taken

at 106magnification, while gill filament diameter was measured in

images taken at 46magnification (full-size fish) or 106magnifica-

tion (jacks). Ten measurements of each parameter were taken at

random for each fish in areas where the gill filaments were least

variable in diameter, distal from the gill arch.

Statistics
Statistical tests were performed in SPSS (Build 16.0, SPSS Inc.,

Chicago, IL, USA) and SigmaStat (Build 3.01.0, Systat Software

Inc., www.systat.com) using Bonferroni correction where neces-

sary to account for multiple comparisons. All blood data for

between group comparisons were log-transformed prior to

statistical analyses to satisfy tests for normality. Statistical

differences resulting from the thermal challenge were assessed

using two-way ANOVA with group (full-size male, full-size female,

jack) and temperature as factors, including the interaction term

group*temperature. Two-way repeated measures ANOVA was

used to investigate differences in _MMO2 between groups during

recovery from the exhaustive exercise protocol, and one-way

ANOVA was used to investigate differences in blood variables

between groups at each time point. Two parameter power

regressions were used to examine body mass scaling of measured

variables in male fish. Gill histological measurements were

compared using two-way repeated measures ANOVA with group

and measurement number (1 through 10) as factors.

Results

Thermal challenge
Increasing water temperature to 20uC had a significant effect on

the blood properties of all groups of fish in comparison with the

respective control groups held at 7uC (two-way ANOVA; Fig. 1).

While the qualitative trends were similar for full-size fish (both

sexes) and jacks, the thermally-induced changes tended to be

magnified for full-size females (though the group*temperature

interaction in the two-way ANOVA was not significant for any

blood variable). Specifically, Hct, plasma lactate and potassium all

increased significantly with temperature, while plasma chloride,

sodium, testosterone and 17b-estradiol decreased. Within males,

the only variable to differ significantly with body size was plasma

potassium, which increased significantly with temperature in full-

size males but not in jacks (Fig. 1). The only fish that did not

survive the thermal challenge was a full-size mature male, which

was the largest male in the trial (3.7 kg). Blood was sampled from

this fish following death but the data were not included in Fig. 1.

Notably, plasma lactate (17.0 mmol l21) and potassium

(13.3 mmol l21) were higher in this fish than in any other

individual, while plasma testosterone (2.2 ng ml21) was the lowest

of all fish.

Recovery from exhaustive exercise
The exercise and air exposure protocol caused complete

exhaustion in all groups of fish (no capacity to continue burst

Fish Body Size and Environmental Stress
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swimming) and a significant increase in _MMO2 (Fig. 2A). The _MMO2

recovery profile following the exercise protocol was similar for full-

size males and females, where _MMO2 began to increase after ,3 h,

peaked between 6–8 h, and then gradually declined to resting

levels by 12.360.4 h post-exercise. While jacks achieved the same

minimum and peak levels of _MMO2 as full-size fish (i.e., ,1 and

,6 mg min21 kg21, respectively [use of isometric scaling justified

below]), the initial increase in _MMO2 began about 1 h earlier than

for full-size fish, and metabolic recovery was complete at

9.360.5 h rather than 12.3 h. Ventilation rate, measured in a

subsample of fish at 1 h post-exercise, was higher in jacks (7563

beats min21; 0.4060.03 kg) than in full-size fish (6262 beats

min21; 3.9960.28 kg; t-test P = 0.002).

The exercise protocol caused an abrupt increase in heart rate of

full-size fish (both sexes), which progressively decreased to resting

levels over a longer time period than _MMO2 (i.e., ,17 h; Fig. 2B).

There were no sex-specific differences in heart rate, despite the

potential for the elevated plasma cortisol of females to have a

positive chronotropic effect (e.g., [29]). It was not possible to

determine the role of heart rate in the size-specific differences

documented for _MMO2 because jacks were too small to be

implanted with biologgers.

Blood variables clearly illustrated the stress response linked with

the exhaustive exercise protocol, such as increases in Hct, plasma

lactate and cortisol, and disruption to plasma ion concentrations

(Fig. 2). Plasma potassium and osmolality differed between full-size

males and jacks at certain points throughout the recovery period,

suggesting that these variables may play some role in the size-

specific difference in metabolic recovery (Fig. 2H, 2I). Addition-

ally, the delayed increase in plasma potassium was similar to that

of _MMO2 (i.e., 2–4 h post-exercise). However, there was no size-

specific difference in plasma potassium at 8 h post-exercise,

contrary to expectations based on the marked size-specific

difference in _MMO2 at that time point (Fig. 2A, 2H). One of the

most obvious size-specific haematological findings was the higher

plasma testosterone concentration in jacks compared with full-size

males, and the ability of jacks to regain high levels of testosterone

at 19 h post-exercise while testosterone of full-size males remained

depressed (Fig. 2K).

Body mass scaling
Physiological and morphological data were compared across all

males, which spanned over an order of magnitude in body mass

(Fig. 3). The mass scaling exponents (b) were 1.0560.06 for

minimum _MMO2 ( _MMO2min; taken as the lowest _MMO2 recorded

post-recovery) and 0.9760.06 for peak _MMO2 ( _MMO2peak; taken as

the highest _MMO2 recorded during the recovery period). Thus, the

factorial aerobic scope (calculated as _MMO2peak/ _MMO2min) did not

differ substantially with increasing body mass. Excess post-exercise

oxygen consumption (EPOC; calculated for each individual as the

total amount of oxygen consumed above _MMO2min throughout the

recovery period) was disproportionately higher in full-size males

than in jacks (b = 1.2060.08; Fig. 3B), which reflected the longer

duration of metabolic recovery in full-size males (b,0.16; see

above) rather than any size-specific differences in mass-specific
_MMO2min or _MMO2peak.

Masses of the ventricle, gill basket and liver scaled close to

isometrically with body mass (b = 1.05–1.07; Fig. 3). Spleen mass

scaled slightly above isometric (b = 1.1360.05). Gill histology

revealed size-specific differences in gill filament diameter

(b = 0.2960.06), lamellae length (b = 0.3460.12), and interlamellar

distance (b = 0.1960.02; Fig. 4). In contrast, the other gill histology

measurements were independent of body mass: blood-water

diffusion distance averaged 2.260.7 mm, gill lamellae diameter

averaged 14.061.9 mm, and maximum erythrocyte diameter

averaged 8.661.2 mm. Gonad mass scaled with an exponent of

0.84, indicating a relatively smaller gonad mass with increasing

body mass and suggesting that jacks have a proportionately greater

capacity for reproductive output (Fig. 3).

Following from the size-specific differences in plasma testoster-

one, potassium and osmolality detailed above, blood data from

males were pooled for the 19 h post-exercise recovery group and

the thermal challenge control group (both sampled at 7uC) to

provide a large dataset (N = 38, Mb range 0.20–4.22 kg) to

examine for any scaling of blood variables (Table 1). Significant

relationships were found for plasma testosterone, potassium and

osmolality, but not for any of the other measured blood

parameters (Table 1). The same analyses performed on the male

fish sampled at 20uC (N = 13) revealed no significant scaling

between any blood variable and body mass, suggesting that the

difference in plasma potassium detailed above (see Thermal challenge)

was related to group differences (i.e., full-size males versus jacks)

rather than body mass per se. Nevertheless, this finding should be

taken with caution due to low sample size at 20uC (Table 1).

Discussion

Body mass and thermal tolerance
There is a growing database for fishes to suggest that small adult

individuals within a species may be more resilient to acute and

Figure 1. Changes in blood parameters of coho salmon (O. kisutch) upon exposure to an acute temperature increase from 7 to 206C.
Full-size males, full-size females, and jacks are presented (N given in Materials and methods). The blood parameters and their corresponding units are:
Hct (haematocrit, %), Glu (glucose, mmol l21), Lac (lactate, mmol l21), Cl (chloride, mmol l21), Na (sodium, mmol l21), K (potassium, mmol l21), Osmo
(osmolality, mOsm kg21), Cort (cortisol, ng ml21), Testo (testosterone, ng ml21), and Estra (17b-estradiol, ng ml21). All variables were measured in
blood plasma, except Hct which was measured in whole blood. Two-way ANOVA was used for statistical comparisons (see Statistics). * significantly
different from zero (i.e., significantly different from the control group held at 7uC) at the level of P,0.05; ** significantly different from zero at the
level of P,0.001. Full-size males and jacks did not differ in any blood parameter within the 7uC group or within the 20uC group. The only difference
between these two groups was that full-size males had a significant increase in plasma potassium from 7 to 20uC, whereas jacks did not.
doi:10.1371/journal.pone.0039079.g001

Fish Body Size and Environmental Stress

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e39079



chronic high temperature exposures than their larger conspecifics

[1,3,5]. It is noteworthy that the only fish that did not survive the

thermal challenge in the present study was the largest male.

Significantly elevated plasma potassium in full-size males (includ-

ing very high levels in the male that died) in comparison with jacks

may point to a vital role of the ionoregulatory system in

determining temperature tolerance. Additionally, size-specific

differences in oxygen uptake across the gills may have played

some role in the findings, as has been documented previously for

Chinook salmon where large individuals maintained lower arterial

oxygen content and subsequently had lower venous oxygen

reserves to supply the spongy myocardium [5]. In contrast, most

of the physiological and morphological variables measured in the

present study either did not scale with body mass, or scaled

isometrically, suggesting little contribution of these variables in

determining size-specific thermal tolerance. The clear sex-specific

differences in blood parameters in response to the temperature

challenge (Fig. 1) help to explain the lower tolerance of female

Pacific salmon to environmental perturbations [14,29,30].

While it has been proposed that the phenomenon of size-specific

thermal tolerance in adult fishes is linked with a decrease in

aerobic scope with increasing body mass (e.g., [3]), the results of

the present study suggest that this is not the case in salmonids.

Indeed, this is one of few studies to examine the intraspecific

allometry of both minimum and active (peak) _MMO2 in mature

fishes, and the results demonstrate that factorial aerobic scope

changes little across body mass at 7uC (Fig. 3A). It should be noted

that a similar exhaustive exercise protocol as the one used in this

study elicited a higher maximum _MMO2 in Atlantic cod (Gadus

morhua) than did a Ucrit test [31]. Furthermore, the values for

Figure 2. Responses in cardiorespiratory variables and blood properties of coho salmon (O. kisutch) following a standard treatment
(3 min exhaustive exercise plus 1 min air exposure) at 76C. The treatment concluded, and recovery commenced, at Time = 0 h. Full-size males
(black), full-size females (white), and jacks (grey) are presented. Rates of oxygen consumption ( _MMO2) were measured using respirometry (N = 10 full-
size males, N = 12 full-size females, N = 11 jacks), and heart rates (fH) were measured using surgically implanted biologgers (N = 3 full-size males, N = 3
full-size females). Abbreviations and units for the blood variables are given in Fig. 1 (for blood variables, N = 10–14 for each group at each time point,
except at 4 h where N = 5–10 for each group). Letters near data points denote significant differences (P,0.05) within a given time interval between
(A) full-size males and full-size females, (B) full-size females and jacks, and (C) full-size males and jacks. Shaded horizontal bars represent mean6SD
reference values for full-size male O. kisutch taken from Clark et al. [23] (raw data from caudal sample in table II).
doi:10.1371/journal.pone.0039079.g002
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_MMO2peak in this study are only slightly lower than the values of

maximum _MMO2 reported for full-size coho salmon exercising in a

swim tunnel at the same temperature [24], and this difference

could quite easily be associated with methodological rather than

biological differences. Future research should investigate the

thermal-dependence of the allometry of aerobic scope in adult

fishes to determine whether this may help to explain size-specific

thermal tolerance.

Body mass and recovery from exercise
Despite the subtle size-specific responses of coho salmon to

acute warming, clear size-specific differences in metabolic recovery

from exhaustive exercise were apparent (Fig. 2A). Mass-specific

EPOC was 28% less in jacks than full-size males and post-exercise

recovery was 24% shorter. Interestingly in this regard, larger

sockeye salmon (O. nerka) tended to have lower migration survival

than smaller individuals when released in the marine environment

en route to spawning grounds following a fisheries capture event

[32]. Since ventricle mass scales isometrically with body mass in

salmonids (Fig. 3C; [33]), it may be reasonable to assume that

cardiac stroke volume also scales proportionally. While it was not

possible to measure heart rate recovery in jacks in the present

study, this is an obvious next step once appropriately-sized

technology is developed. Nevertheless, resting heart rate is not

dependent on body mass in mature Chinook salmon spanning a

mass range of 2.7 to 16.8 kg [33], and cardiac output scales

Figure 3. Relationships between body mass (Mb) and metabolic
and anatomical parameters of coho salmon (O. kisutch). (A)
minimum (squares) and peak (circles) oxygen consumption rate ( _MMO2min

and _MMO2peak, respectively), (B) excess post-exercise oxygen consump-
tion (EPOC), and (C–G) anatomical parameters. Only data for full-size
males (black) and jacks (grey) are presented to remove variability
associated with sex-specific differences. Regression lines (with standard

errors in parentheses) are described by: (A) _MMO2min = 0.861 (0.047) N
Mb

1.053 (0.063) (R2 = 0.935, P,0.001), _MMO2peak = 7.103 (0.339) N Mb
0.968 (0.056)

(R2 = 0.935, P,0.001); (B) EPOC = 2154.6 (136.9) N Mb
1.196 (0.075) (R2 = 0.927,

P,0.001); (C) ventricle mass = 1.662 (0.022) N Mb
1.045 (0.016) (R2 = 0.985,

P,0.001); (D) gill basket mass = 25.519 (0.589) N Mb
1.061 (0.020) (R2 = 0.993,

P,0.001); (E) gonad mass = 76.906 (2.113) N Mb
0.824 (0.033) (R2 = 0.907,

P,0.001); (F) spleen mass = 1.503 (0.060) N Mb
1.134 (0.047) (R2 = 0.897,

P,0.001); (G) liver mass = 11.625 (0.236) N Mb
1.066 (0.024) (R2 = 0.968,

P,0.001).
doi:10.1371/journal.pone.0039079.g003

Figure 4. Effects of body mass (Mb) on gill morphology of coho
salmon (O. kisutch). Relationships between Mb and each of (A) gill
filament diameter (GFD), (B) lamellae length (LL), and (C) interlamellar
distance (ID) for jacks (grey symbols) and full-size fish (black symbols).
Regression lines (with standard errors in parentheses) are described by:
(A) GFD = 87.667 (6.180) N Mb

0.293 (0.058) (R2 = 0.863; P = 0.007); (B)
LL = 284.539 (40.478) N Mb

0.336 (0.118) (R2 = 0.672; P = 0.046); (C)
ID = 34.355 (0.735) N Mb

0.187 (0.018) (R2 = 0.966; P,0.001). Histological
preparations of sections of gill tissue from (D) jack and (E–F) full-size
coho salmon illustrate the measurements taken, where L is lamellae, GF
is gill filament, LD is lamellae diameter, ED is erythrocyte diameter, and
BWDD is blood-water diffusion distance.
doi:10.1371/journal.pone.0039079.g004
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isometrically in Chinook salmon over the body mass range that

has been examined to date (2.1–5.4 kg; [5,33]). Others have

demonstrated for a range of fish species that gill surface area

generally scales with body mass with an exponent around 0.8

[34,35], which is expectedly lower than the scaling exponent of

1.06 determined for the gill basket mass of coho salmon in the

present study (Fig. 3D) since the former is a surface area

(theoretically scales to body mass with b = O) and the latter is a

mass (theoretically scales to body mass with b = 1). Based on the

above points, and the higher ventilation rate of jacks at 1 h post-

exercise, it may seem reasonable to assume that metabolic

recovery of full-size fish may have been limited by oxygen uptake

at the gills rather than by convective oxygen transport through the

circulatory system. However, isometric scaling of _MMO2peak,

constant blood-water diffusion distance across body mass, and

expected scaling (i.e., b,M) of gill filament diameter (b = 0.29) and

lamellae length (b = 0.34) all suggest that there was no size-specific

effect on the rate of either diffusive or convective oxygen transport.

A critic could argue that jacks did not exhaust themselves as

much as full-size fish during the exercise protocol, which

subsequently caused the size-specific differences in metabolic

recovery. However, this is highly unlikely since jacks appeared

equally exhausted as full-size fish during and following the

protocol, and plasma lactate and cortisol reached similar levels

independent of fish size (Fig. 2). Indeed, there was little evidence

for an attenuated blood stress response or a faster recovery of

plasma lactate and cortisol that allowed jacks to achieve a faster

metabolic recovery (also see [36,37]). Instead, it seems likely that

larger fish simply had a greater ‘oxygen debt’ that took longer to

pay back at a size-independent _MMO2peak of ,6 mg min21 kg21.

Regaining osmoregulatory homeostasis is a contributor to the

oxygen debt recovery and jacks appeared to accomplish this faster

than full-size males following the exhaustive exercise protocol

(Fig. 2I). Previously, it was shown that exercise-trained juvenile

Chinook salmon were better able to maintain osmoregulatory

status during and following a prolonged swimming challenge to

exhaustion when compared with similarly-sized untrained fish

[38]. Whether such effects of training and body size are related to

an improved ability to manage the osmo-respiratory compromise

[39,40] or some other process is unclear.

Adding to the known effects of stress on reproductive

maturation and gamete quality (e.g., [41]), the present study

discovered a novel size effect for hormonal recovery in the form of

a delay in restoration of plasma testosterone in full-size males

(Fig. 2K). Maturing salmonids elevate plasma testosterone as part

of gonadal development [42], and so it is possible that the

maturation trajectory of jacks may be less impaired than full-size

males following an exhaustive interaction with a fishery or an

animal predator. Since the strategy of returning as a jack has a

genetic component in coho salmon [43,44], the possibility exists

for selection towards this life history trait if selection pressure is

sufficient.

Conclusions
Fisheries have been implicated in modifying the size structure of

fish populations by harvesting larger individuals and avoiding or

releasing smaller ones [21,45,46,47,48,49]. More recent data

suggest that, independent of fisheries, the warming global climate

is compounding this issue by selecting for smaller fish species and

smaller individuals within a species [1,3]. Despite an extensive

investigation, this study did not discover any obvious physiological

mechanisms or morphological attributes that may underlie

superior thermal tolerance in small individuals, although distur-

bance to ionoregulatory homeostasis emerged as one of the more

likely factors. Nevertheless, the present study highlighted yet

another issue in the form of size-specific recovery of homeostasis

(e.g., metabolic, osmoregulatory and hormonal recovery) following

exhaustive exercise that may have a proportionately more negative

effect on larger than smaller conspecifics when released following

capture. With multiple drivers selecting for smaller individuals, it

seems likely that average fish mass and size at maturity will

continue to decrease for many species, with those species

interacting with fisheries likely to experience the greatest impact.

Given the substantial ecological and economical implications of

this issue, particularly with a rapidly increasing human reliance on

fish products, further research is imperative to help understand the

underlying mechanisms and guide sustainable fishing practices in a

changing world.
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